A Matrix-Based Approach to Global Locality Optimization

نویسندگان

  • Mahmut T. Kandemir
  • Alok N. Choudhary
  • J. Ramanujam
  • Prithviraj Banerjee
چکیده

Global locality optimization is a technique for improving the cache performance of a sequence of loop nests through a combination of loop and data layout transformations. Pure loop transformations are restricted by data dependences and may not be very successful in optimizing imperfectly nested loops and explicitly parallelized programs. Although pure data transformations are not constrained by data dependences, the impact of a data transformation on an array might be program-wide; that is, it can affect all the references to that array in all the loop nests. Therefore, in this paper we argue for an integrated approach that employs both loop and data transformations. The method enjoys the advantages of most of the previous techniques for enhancing locality and is efficient. In our approach, the loop nests in a program are processed one by one and the data layout constraints obtained from one nest are propagated for the optimizing the remaining loop nests. We show a simple and effective matrix-based framework to implement this process. The search space that we consider for possible loop transformations can be represented by general non-singular linear transformation matrices and the data layouts that we consider are those that can be expressed using hyperplanes. Experiments with several floating-point programs on an 8-processor SGI Origin 2000 distributed-shared-memory machine demonstrate the efficacy of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Loop Transformation Algorithm Based on Explicit Data Layout Representation for Optimizing Locality

We present a cache locality optimization technique that can optimize a loop nest even if the arrays referenced have different layouts in memory. Such a capability is required for a global locality optimization framework that applies both loop and data transformations to a sequence of loop nests for optimizing locality. Our method finds a nonsingular iteration-space transformation matrix such th...

متن کامل

A Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...

متن کامل

A Layout-Conscious Iteration Space Transformation Technique

ÐExploiting locality of references has become extremely important in realizing the potential performance of modern machines with deep memory hierarchies. The data access patterns of programs and the memory layouts of the accessed data sets play a critical role in determining the performance of applications running on these machines. This paper presents a cache locality optimization technique th...

متن کامل

Separable and Localized System Level Synthesis for Large-Scale Systems

A major challenge faced in the design of large-scale cyber-physical systems, such as power systems, the Internet of Things or intelligent transportation systems, is that traditional distributed optimal control methods do not scale gracefully, neither in controller synthesis nor in controller implementation, to systems composed of millions, billions or even trillions of interacting subsystems. T...

متن کامل

Locality Preserving Feature Learning

Locality Preserving Indexing (LPI) has been quite successful in tackling document analysis problems, such as clustering or classification. The approach relies on the Locality Preserving Criterion, which preserves the locality of the data points. However, LPI takes every word in a data corpus into account, even though many words may not be useful for document clustering. To overcome this problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1999